
Netdev0x12, July 2018, Montreal, Canada

Linux IPsec Tutorial

Sowmini Varadhan (Oracle) & Paul Wouters (Redhat)

Netdev0x12, July 2018, Montreal, Canada

Agenda

• Background: brief introduction to IPsec and IKE
terminology

• IPsec datapath walk-through: trace the life of a
UDP packet for the transmit and receive path as it
passes through the Linux kernel’s network stack
(Sowmini Varadhan)

• IPsec control plane walk-through: everything you
wanted to know about the IKE control plane (Paul
Wouters)

Netdev0x12, July 2018, Montreal, Canada

First, a review of IPsec/IKE terminology/definitions

Netdev0x12, July 2018, Montreal, Canada

What is IPsec?
• IP Security
• Suite of protocols for encryption (adding a “ESP”

header) and Authentication (adding a “AUTH”
header)

• Encryption parameters (e.g., key, algorithm) are
determined from two databases:

– Security Policy database (SPD)
– Security Association database (SADB)

Netdev0x12, July 2018, Montreal, Canada

SPD and SADB
• SPD: Security Policy Database

– What must be done: e.g., “for packets in 13.0.0.0/24,
perform IPsec ESP processing”, “discard packets in
192.168.0.0/16”

– Multiple transforms may be specified, e.g., “for packets
from 12.0.0.1→12.0.0.2, apply ESP, then apply
compression”

– May need to create/lookup a Security Association to
perform the action defined the SPD entry

• SADB: Security Association Database
– How to apply the security transform(s): e.g., “for packets

from 13.0.0.1 → 13.0.0.2, apply AES-GCM-256 with the key
0x1234.. and a 128 bit IV”

– IKE (Internet Key Exchange) protocol for negotiating and
establishing SADB parameters for the IPsec association

Netdev0x12, July 2018, Montreal, Canada

Example of SPD and SADB entries

• Policy for “Encrypt all UDP packets to 13.0.0.0/24 using ESP”
ip x p # to display SPD using /sbin/ip

 src 13.0.0.8/32 dst 13.0.0.0/24 proto udp
 dir out priority 2024 ptype main
 tmpl src 0.0.0.0 dst 0.0.0.0

 proto esp reqid 0 mode transport

• SA for 13.0.0.8 → 13.0.0.9 “acquired” from that Policy
ip x s # to display SADB entries
 src 13.0.0.8 dst 13.0.0.9
 proto esp spi 0x9de792fc reqid 16397 mode transport
 replay-window 32

 aead rfc4106(gcm(aes)) 0x9831b3b3b7c7.. 64
 anti-replay context: seq 0x0, oseq 0x1, bitmap 0x0
 sel src 13.0.0.8/32 dst 13.0.0.9/32 proto udp

• We will come back to this example as we trace our packet
path...

Netdev0x12, July 2018, Montreal, Canada

IPsec Transport vs Tunnel mode

• IPsec Transport mode: ESP/AH transforms apply
to L4 (TCP or UDP) header and payload.

– Protects L4 header
– L3/routing information is not modified
– Typically used for host-host IPsec

• IPsec Tunnel mode: IP packet is encapsulated
inside another IP packet. The IPsec transforms are
applied to the inner (original) IP packet.

– Protects IP and TCP header of the original packet
– Typically used for VPNs
– Routing information MAY be modified

• Note that we say that we establish an “SWAN
tunnel” even for transport mode- the “tunnel” in this
case is just the terminology for an end-to-end
IPsec association.

Netdev0x12, July 2018, Montreal, Canada

IPsec encryption with ESP

• Encrypts data (either TCP/UDP payload for
transport mode, or IP packet for tunnel mode)

• Adds an ESP header with an “Security Parameter
Index” (SPI) and sequence number

– SPI uniquely identifies a “Security Assocation” (SA)
for which the security parameters (keys, crypto algo
etc) are defined. Thus SPI essentially identifies a flow
for IPsec

– Sequence number is used to protect against replay
attacks

• Adds an ESP trailer which contains the “original
protocol” of the data that was encrypted.

Netdev0x12, July 2018, Montreal, Canada

What does each transform look like?

If we start with the following packet in clear (unencrypted packet):

Eth
header

IP header;
proto TCP
10.0.0.1 → 10.0.0.2

TCP
hdr

TCP Payload
Eth
header

TCP
hdr

Netdev0x12, July 2018, Montreal, Canada

Effect of IPsec transforms

Eth
header

IP header;
proto ESP
10.0.0.1 → 10.0.0.2

ESP header
SPI, seq#

ESP trailer
proto TCP

TCP hdr
& payload

IPsec transport-mode encaps (ESP only)

Eth
hdr

Outer IP
header;
Proto ESP
osrc → odst

ESP header
SPI, seq#

Orig TCP/IP packet for
10.0.0.1 → 10.0.0.2, with
TCP hdr and payload

ESP trailer
Proto (4)
IP-in-IP

IPsec tunnel mode. The outer osrc/odst are determined by VPN config.
They would be the 10.0.0.1 and 10.0.0.2 if no VPN gw is used.

Netdev0x12, July 2018, Montreal, Canada

IKE: Internet Key Exchange

• Dynamically negotiates and establishes the
security parameters for each IPsec tunnel,
typically from user-space

– Implemented in the “pluto” daemon from the *swan
packages on Linux

• IKEv2: IETF RFC 7296
• Paul W will tell us more about IKE ….

Netdev0x12, July 2018, Montreal, Canada

Linux IPsec datapath for the transmit side

• Assume that a SPD entry has been setup for a
flow from 13.0.0.8 → 13.0.0.0/24

• Follow the life of a UDP packet sent from 13.0.0.8
down the stack to see how IPsec gets applied.

– Based on 4.16 source code

• This example will show on-demand SA
establishment, and assumes that the SPD entry
has been set up using some IKE implementation

• Will not cover IPsec offload

Netdev0x12, July 2018, Montreal, Canada

connect()

__ip4_datagram_connect()

sendmsg()

udp_sendmsg()

ip_route_output_flow()

xfrm_lookup_route()

Connect()ed UDP socket Unconnected UDP socket

Route lookup for UDP transmit path

ip_route_output_flow() looks up the routing table via fib_lookup() to
find the path to the destination (aka “dst_orig” in the code).
Then we look for any IPsec SPDs via xfrm_lookup_route(). Note that
“XFRM” stands for IPsec transform

Netdev0x12, July 2018, Montreal, Canada

Finding the SA from the destination cache
entry (dst_entry) in xfrm_lookup_route()

• For clear trafficclear traffic, the
dst_entry returned is the
same as dst_orig

• IPsec trafficIPsec traffic: If there is an
applicable SPD and SADB
entry for this flow, the SA will
be returned in the xfrm

• “xfrm_state” is the Linux
kernel data-structure that
tracks SA’s

{
 dev = 0xffff8837ed520000, /* net_device */
 ops = 0xffffffff821cda80 <ipv4_dst_ops>,
 _metrics = 18446744071592359009,
 expires = 0,
 xfrm = 0x0,xfrm = 0x0,
 input = 0xffffffff81679000 <dst_discard>,
 output = 0xffffffff816c2670 <ip_output>,
 :

 {/* dst_entry from xfrm_lookup_route() */{/* dst_entry from xfrm_lookup_route() */
 dev = 0xffff8837ed4c0000,dev = 0xffff8837ed4c0000,
 ops = 0xffffffff821bb2c0 <init_net+4608>,ops = 0xffffffff821bb2c0 <init_net+4608>,
 _metrics = 18446612372530779936,_metrics = 18446612372530779936,
 expires = 0,expires = 0,
 xfrm = 0xffff8837f1be5400, /* xfrm_state */xfrm = 0xffff8837f1be5400, /* xfrm_state */
 input = 0xffffffff81718a40 <dst_discard>,input = 0xffffffff81718a40 <dst_discard>,
 output = 0xffffffff81717ff0 <xfrm4_output>,output = 0xffffffff81717ff0 <xfrm4_output>,
 ::

Netdev0x12, July 2018, Montreal, Canada

“On Demand” SADB creation

• The Security Association is tracked in a
xfrm_state structure in the Linux kernel.

• The IKE daemon can be set up so that SA’s are
created “on-demand”, i.e., establish the IKE tunnel
and create the SA when traffic is triggered for the
flow specified by the SPD.

– This is common practice, to avoid creating tunnels
when there is no traffic going through them.

• In this case, xfrm_lookup_route() will find a
matching SPD entry, but no SA

• The kernel has to make an upcall to the IKE
daemon to trigger SA creation for the packet.

Netdev0x12, July 2018, Montreal, Canada

xfrm_send_acquire()xfrm_send_acquire()
 ::
xfrm_tmpl_resolve_one()xfrm_tmpl_resolve_one()
 ::
xfrm_lookup_route() xfrm_lookup_route()

1. XFRM_MSG_ACQUIRE1. XFRM_MSG_ACQUIRE

2. IKE negotiation2. IKE negotiationIKE daemonIKE daemon
e.g. Plutoe.g. Pluto

IKE daemonIKE daemon
e.g. Plutoe.g. Pluto

useruser

kernelkernel
3. XFRM_MSG_NEWSA3. XFRM_MSG_NEWSA

On-demand SA creation via ACQUIRE

UDP

Netdev0x12, July 2018, Montreal, Canada

Dispatch packet based on dst_entry
returned from routing table lookup

• After the SADB lookup returns with success (SA
was needed, we found one), the →output
indirection in the dst_entry (aka dst_output())
points at xfrm4_output() for our UDP packet

• Any applicable Netfilter hooks may be applied in
xfrm4_output. If these are successful (packet
passes filters) __xfrm4_output() gets called.

• Now we need to actually apply the IPsec transform
defined in the xfrm_state

– let’s see what the xfrm_state contains..

daddr = 13.0.0.9
spi = 0xfc92e79d
proto = 50 (ESP)
daddr=13.0.0.9
saddr=13.0.0.8
proto = 17 (UDP)
:

alg_name=”rfc4106(gcm(aes))”
alg_key_len=288
alg_icv_len=64
alg_key[]=0x9831b3b3b7..

reqid=16397
ealgo=18 /* SADB_X_EALG_AES_GCM_ICV8 */
saddr=13.0.0.8
header_len = 16
trailer_len = 13
:

input = xfrm4_transport_input
output = xfrm4_transport_output
afinfo = xfrm4_state_afinfo
:

xfrm_id

xfrm_selector

xfrm_algo_aead

props

xfrm_state for the 13.0.0.8 → 13.0.0.9 SA

xfrm_mode

1: see backup slides for additional details

Netdev0x12, July 2018, Montreal, Canada

Dispatch packet based on xfrm_mode

• The outer_mode for a transport mode SA is the
xfrm4_transport_mode. Relevant indirections are
 input = 0xffffffffa0a23120 <xfrm4_transport_input>,
 output = 0xffffffffa0a23080 <xfrm4_transport_output>,

 afinfo = 0xffffffff821d1680 <xfrm4_state_afinfo>,

• __xfrm4_output invokes the afinfo→output_finish(),
which is xfrm4_output_finish

• xfrm_output_finish() calls xfrm_output(), from where
multiple IPsec perf features may be invoked.

Netdev0x12, July 2018, Montreal, Canada

xfrm_output() and beyond..

• If IPsec h/w offload can be applied (outgoing
interfaces supports it, packet will not need ip
fragmentation etc), we maymay set up state needed
for offload in the packet (e.g., pointers to the
xfrm_state for the NIC)

• If the packet is eligible for GSO the actual IPsec
transform is deferred (will be done after GSO has
segmented the packet)

• For small/non-GSO packets, we would call
xfrm_output2→xfrm_output_resume() to do the
IPsec transform

Netdev0x12, July 2018, Montreal, Canada

Applying the IPsec transform in
xfrm_output_resume()

• Call xfrm_output_one() to do the following using
info in the xfrm_state “x”

– xfrm_skb_check_space: Is there space for ESP
header?

– x→outer_mode→output() (xfrm4_transport_output)
adds the ESP encapsulation header

– xfrm_state_check_expire(): did the key expire?
– x→repl→overflow(): replay protection check

(xfrm_replay_overflow)
– Either offload the crypto or call x→type→output()

(esp_output) to encrypt

• If all is still well, skb_dst(skb)→ops→local_out()
aka __ip_local_out() is called

Netdev0x12, July 2018, Montreal, Canada

Sending the packet through IP

• The dst_output() is now ip_output, packet is
encrypted.

• ip_output() → ip_finish_output() sends the IPv4
packet on its way

– May be fragmented, in which case each fragment is
sent with IP proto 50

Netdev0x12, July 2018, Montreal, Canada

Linux IPsec: UDP receive side path

• Two cases possible based on whether or not we
have GRO enabled

• What is GRO?
– Try to coalesce small packets in the same flow into a

large packet before sending it up the stack. Builds on
the principles described for clear packets in
https://lwn.net/Articles/358910/

https://lwn.net/Articles/358910/

Netdev0x12, July 2018, Montreal, Canada

Case 1: no IPsec GRO, setting up the
Destination Cache Entry

• Most drivers first try to deliver the packet through
the GRO callback path, via napi_gro_receive()

• napi_gro_receive() calls dev_gro_receive()
– In our example, the skb→protocol for the packet is

the ethernet type 0x800, so in dev_gro_receive() we
try to call inet_gro_receive()

– But inet_gro_receive() will not find an entry for
inet_offloads[IPPROTO_ESP]

– So we fall back to the non-GRO path..

• Non-GRO path: napi_gro_receive() ends up in
netif_receive_skb_core→ip_rcv→ip_rcv_finish

• We set up the dst_entry via ip_route_input_noref()
– The dst_input is set to ip_local_deliver()

Netdev0x12, July 2018, Montreal, Canada

ip_local_deliver → XFRM

• ip_local_deliver → ip_local_deliver_finish looks up
inet_protos[IPPROTO_ESP]

• The →handler() is xfrm4_esp_rcv(), so we drop
into the XFRM code..

Netdev0x12, July 2018, Montreal, Canada

xfrm4_esp_rcv()

• xfrm4_esp_rcv goes through, and invokes, the list
of handlers that were registered via
xfrm4_protocol_register()

– If there is a non-null handler that returns something
other than EINVAL, the packet is considered
“consumed”

• What’s in esp4_handlers? On my test machine, I
have CONFIG_NET_IPVTI enabled, so I find:

handler=vti_rcv
input_handler=vti_input
cb_handler=vti_rcv_cb
err_handler-vti4_err
next

handler=xfrm4_rcv
input_handler=xfrm_input
cb_handler=esp4_rcv_cb
err_handler=esp4_err
next = NULL

xfrm4_protocolxfrm4_protocol

Netdev0x12, July 2018, Montreal, Canada

Rx side IPsec processing: xfrm_input

• xfrm4_rcv → xfrm4_rcv_spi → xfrm_input
• Parse the packet for the SPI and find the SA
• Validates SA (check lifetime, replay protection..)
• If there was no h/w offload support, call esp_input

and decrypt
• Reinject the decrypted packet to the IP stack via

ip_local_deliver (the value in dst_input(skb))
– When GRO is not available, this is done through a

tasklet whose callback is xfrm_trans_reinject()

Netdev0x12, July 2018, Montreal, Canada

Case 2: IPsec GRO is enabled

• Basic idea behind GRO: coalesce packets in the
same flow and try to send large packets up the
stack

• For IPsec, first decrypt, then send the clear packet
to the GRO callbacks for UDP/IP

• IPsec GRO is enabled when the esp4_offload
modules is loaded in the kernel

– Manually, by ‘modprobe esp4_offload’
– By enabling crypto offload during SA addition

Netdev0x12, July 2018, Montreal, Canada

Callbacks provided by esp4_offload

• Loading the esp4_offload module adds the
following callback to inet_offloads[50] for
IPPROTO_ESP
static const struct net_offload esp4_offload = {
 .callbacks = {

 .gro_receive = esp4_gro_receive,

 .gso_segment = esp4_gso_segment,

 },
};

• So an incoming packet will now be processed in
esp4_gro_receive() from inet_gro_receive()

Netdev0x12, July 2018, Montreal, Canada

esp4_gro_receive() processing

• Find the xfrm_state (SA), set up some GRO state
in the sk_buff’s secpath

• Call xfrm_input() for the Rx side IPsec processing
• Re-inject the packet via gro_cell_receive

– NAPI framework is used for re-inject. The xfrm
module has a dummy device, xfrm_napi_dev, that
enables this.

• NAPI requeue will pick up the clear packet and
pass it to inet_gro_receive() where we follow the
UDP/IP path for GRO.

Netdev0x12, July 2018, Montreal, Canada

Backup Slides

Netdev0x12, July 2018, Montreal, Canada

Gory details about inner_mode,
outer_mode, inner_mode_iaf in the
SA
• The struct xfrm_state actually has 3 xfrm_mode

structures:inner_mode, outer_mode,
inner_mode_iaf

• When in tunnel mode, if the inner packet (being
encrypted is IPv6 and the outer (VPN) header is IPv4
(or vice-versa: inner is IPv4, outer is IPv6) then the
inner_mode != outer_mode.

– The inner_mode corresponds to the xfrm_mode of the inner packet

– In this case the inner_mode_iaf gives the xfrm_mode for the “other” IP
version. The inner_mode_iaf is only used when x->sel.family is
AF_UNSPEC. In this case we try to get the correct mode from the
packet header information. Based on that, we use either inner_mode or
inner_mode_iaf (see xfrm_prepare_input())

• In all other cases, the inner_mode == outer_mode

• inner_mode_iaf is always NULL for transport mode

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

